Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs
نویسندگان
چکیده
Plastids carry their own genetic material that encodes a variable set of genes that are limited in number but functionally important. Aside from orthology, the lineage-specific order and orientation of these genes are also relevant. Here, we develop a database, Plastid-LCGbase (http://lcgbase.big.ac.cn/plastid-LCGbase/), which focuses on organizational variability of plastid genes and genomes from diverse taxonomic groups. The current Plastid-LCGbase contains information from 470 plastid genomes and exhibits several unique features. First, through a genome-overview page generated from OrganellarGenomeDRAW, it displays general arrangement of all plastid genes (circular or linear). Second, it shows patterns and modes of all paired plastid genes and their physical distances across user-defined lineages, which are facilitated by a step-wise stratification of taxonomic groups. Third, it divides the paired genes into three categories (co-directionally-paired genes or CDPGs, convergently-paired genes or CPGs and divergently-paired genes or DPGs) and three patterns (separation, overlap and inclusion) and provides basic statistics for each species. Fourth, the gene pairing scheme is expandable, where neighboring genes can also be included in species-/lineage-specific comparisons. We hope that Plastid-LCGbase facilitates gene variation (insertion-deletion, translocation and rearrangement) and transcription-level studies of plastid genomes.
منابع مشابه
Regeneration of Glyphosate-Tolerant Nicotiana tabacum after Plastid Transformation with a Mutated Variant of Bacterial aroA gene
Presence of antibiotic resistance markers has always been considered as one of the main safety concerns in transgenic plants and their derived products. Elimination of antibiotic selectable markers from transgenics is a major hurdle for finding efficient and safe candidates. Herbicide tolerance genes might be attractive alternatives. In this study, a variant form of the 5-enoylpyruvyl shikimate...
متن کاملMassive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA e...
متن کاملEvolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and unique...
متن کاملPlastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis.
The plastid genome is highly conserved among plant species, suggesting that alterations of its structure would have dramatic impacts on plant fitness. Nevertheless, little is known about the direct consequences of plastid genome instability. Recently, it was reported that the plastid Whirly proteins WHY1 and WHY3 and a specialized type-I polymerase, POLIB, act as safeguards against plastid geno...
متن کاملGenome-Wide Transcript Profiling Reveals the Coevolution of Plastid Gene Sequences and Transcript Processing Pathways in the Fucoxanthin Dinoflagellate Karlodinium veneficum
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthi...
متن کامل